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ABSTRACT 

In the field of fluid power, accurate knowledge of fluid properties is vital for reasonable prediction of 

component behaviour and system performance. In general, these properties depend on the pressure and 

temperature levels that the respective medium is exposed to. The properties and their respective de-

pendencies are not publicly accessible for many fluids commonly used in fluid power. If measured 

values – typically published in the form of mathematical fluid property models – are available at all, 

their quality is typically unknown. The paper aims to provide tools to objectively ascertain the quality 

of measured fluid properties. For this purpose, an equation is derived which establishes a relationship 

between the thermodynamic parameters of density, bulk modulus, heat capacity and thermal expansion 

coefficient. The presented equation is always satisfied by liquids as well as gases as long as they can 

be treated as a continuum. Based on this relationship, the degree of thermodynamic consistency of 

measured properties is evaluated: The less the equation is fulfilled by experimentally determined fluid 

properties, the more the measured values violate physical laws. The procedure of assessing the ther-

modynamic consistency is demonstrated by evaluating published fluid property models with the 

method outlined above. To aid engineers in judging which degree of thermodynamic inconsistency is 

acceptable, a cut-off value is suggested. 
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1. INTRODUCTION 

For numerical analysis of fluid power systems, it 

is essential to know the properties of the pressure 

medium as accurately as possible. Inaccurate 

fluid properties may introduce considerable error 

in the calculation of leakage losses, natural fre-

quencies, component heating or other individual 

effects. In the worst case, the function of the real-

ised component or even system can even be im-

paired because of large differences between the 

actual fluid properties and the values used during 

design calculations. 

1.1. Significance of fluid properties 

The significance of the most relevant fluid prop-

erties viscosity, bulk modulus, density, speed of 

sound, thermal expansion coefficient and heat ca-

pacity for component or system performance is 

illustrated by some practical examples. 

Example: Pressure drop and viscous heating 

Consider the flow through a generic resistive ele-

ment, e.g. a small throttle or an orifice. Depend-

ing on whether the flow within the resistive ele-

ment is laminar or turbulent, the following rela-

tions between the pressure drop Δ𝑝 across the re-

sistor and the fluid properties hold true: 

 For a given flow rate and laminar flow, the 

pressure drop is proportional to the absolute 

(dynamic) viscosity of the fluid, i.e. Δ𝑝 ∝ 𝜂.  

 For a given flow rate and fully developed tur-

bulent flow, the pressure drop is proportional 

to the density of the fluid, i.e. Δ𝑝 ∝ 𝜌.  

As can be seen, the pressure drop depends line-

arly on the properties of the fluid. 

For a system with imposed flow rate, this fact 

implies that the power requirement of the pump – 

approximately equal to the product of pressure 

drop and flow rate – is heavily influenced by the 

fluid’s properties. Thus, wrong estimates for the 
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fluid’s viscosity or density may lead to over- or 

undersized pumps.  

For pressure-driven flows – e.g. a flow pow-

ered by the discharge of a pressure vessel – the 

strong dependence of the pressure drop on the 

fluid properties may lead to situations where the 

resulting flow rate is higher or lower than desired. 

Depending on whether the dissipative heating 

within the resistor dominates over the generally 

cooling effect of expansion, the fluid’s tempera-

ture will increase or decrease. If heat transfer be-

tween the fluid and the resistor can be neglected, 

the temperature change d𝑇 can be calculated as 

follows: 

d𝑇 = 𝜇𝐽𝑇  d𝑝 = −𝜇𝐽𝑇Δ𝑝  

In this equation, 𝜇𝐽𝑇 denotes the so-called 

JOULE-THOMSON coefficient which only de-

pends on fluid properties. It is calculated based 

on the fluid’s thermal expansion coefficient, its 

density and its specific heat capacity at constant 

pressure. As can be seen from the equation above, 

the sign of the JOULE-THOMSON coefficient 

indicates whether a pressure drop across a resistor 

leads to an increase (𝜇𝐽𝑇 < 0) or decrease (𝜇𝐽𝑇 >
0) of the fluid’s temperature. Depending on the 

temperature and pressure level, the sign of 𝜇𝐽𝑇 

can change. Thus, it is possible that calculations 

based on inaccurate fluid properties may indicate 

a cooling of the fluid when in fact its temperature 

increases. 

Example: Natural frequencies 

Through mathematical analysis, it can be shown 

that the natural frequency of any fluid-power ele-

ment without moving parts (e.g. pipes, large vol-

umes etc.) is proportional to the fluid’s speed of 

sound 𝑎 within the respective element: 

 The natural frequencies of a fluid-filled pipe 

of length 𝐿 depend on the kinematic and dy-

namic boundary conditions. If both pipe ends 

are open or both are closed, the natural fre-

quencies for friction-free flow are given by 

the following expression: 

𝑓 = 𝑖
𝑎

2𝐿
  with 𝑖 ∈ ℕ 

If one pipe end is closed and one pipe end is 

open, the natural frequencies are equal to: 

𝑓 = (2𝑖 − 1)
𝑎

4𝐿
  with 𝑖 ∈ ℕ 

 A so-called Helmholtz resonator consists of a 

volume 𝑉 and a neck of length 𝐿 and cross-

sectional area 𝐴. The combination of the 

neck’s mass and the finite stiffness of the vol-

ume constitutes a simple oscillating system. 

By connecting the neck to a hydraulic or 

pneumatic system, the resonator can be used 

to absorb vibrations, e.g. within a pipeline. 

For negligible friction, the natural frequency 

𝑓 of the resonator is given by the following 

expression: 

𝑓 =
𝑎

2𝜋
√

𝑉

𝐿𝐴
 

The linear relationship between the fluid’s speed 

of sound and the natural frequencies of the system 

delivers yet another example of how inaccurate 

fluid properties can have a strong impact on the 

calculated system behaviour. If the system is op-

erated close to one of its natural frequencies, even 

small changes in the speed of sound lead to dras-

tic changes in the system’s response, e.g. pressure 

amplitudes. 

1.2. Determination of fluid properties 

Being aware of the significance of fluid proper-

ties for system performance, the fluid-power en-

gineer is faced with the question how fluid prop-

erties can be obtained. 

The properties of gases exposed to low pres-

sures and high temperatures (as they are often en-

countered in pneumatic systems) can be calcu-

lated theoretically with satisfactory accuracy by 

using kinetic theory of gases [1]. 

Though useful for gases, statistical mechanics 

has failed to predict the properties of liquids with 

acceptable precision. Hence, for practical pur-

poses, engineers and scientists must rely on ex-

periments to determine the desired fluid proper-

ties. For many pure substances (e.g. water), an ex-

tensive body of literature regarding the results of 

such experiments is available. The data is typi-

cally presented in form of so-called fluid property 

models. A fluid property model is a collection of 

equations generated by curve fitting experimental 

data. These equations provide the desired physi-

cal properties (e.g. density) as functions of ther-

modynamic state variables, usually pressure and 

temperature. For the special case of water, the 

fluid property model developed by the Interna-

tional Association for the Properties of Water 

and Steam (IAPWS) has become an industrial 

quasi-standard [2]. 
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Such broadly peer-reviewed and trustworthy 

fluid property models do not exist for many pres-

sure media commonly used in fluid power (these 

are usually mixtures). In rare cases, fluid proper-

ties or even fluid property models for fluids rele-

vant to hydraulic engineering can be taken from 

academic publications (e.g. the PhD theses of 

WITT or DRUMM) or commercially available 

software packages (e.g. TILMedia Suite) [3][4] 

[5]. If the practising engineer finds such a source 

for fluid properties at all, he is often faced with 

the problem of assessing data of unknown quality 

with respect to its reliability. One necessary, alt-

hough not sufficient, indicator for the quality of 

measured fluid properties or fluid property mod-

els is their thermodynamic consistency. Before 

this concept is discusses further, the thermody-

namic fundamentals with respect to fluid proper-

ties are reviewed first. Additionally, the usual 

definition of the bulk modulus in fluid power is 

subjected to a critical review. 

2. THERMODYNAMIC BACKGROUND 

The only required assumption for the following 

derivations is that the fluid can be considered as 

a continuum. This is guaranteed if the mean free 

path of the fluid particles is significantly smaller 

than the smallest characteristic dimension of the 

problem to be analysed, e.g. the diameter of the 

pipe. This requirement is satisfied for virtually all 

fluids and geometries encountered in the field of 

fluid power. 

2.1. Bulk modulus 

One of the most important fluid properties is the 

bulk modulus 𝐾. The bulk modulus characterises 

the resistance of a substance against a volume-

change induced by a change of the hydrostatic 

pressure. Most fluid power textbooks define the 

bulk modulus as follows [6][7][8]: 

𝐾 = −𝑉
Δ𝑝

Δ𝑉
 (1) 

In this equation, Δ𝑉 refers to the volume change, 

𝑉 to the initial volume before the change took 

place and Δ𝑝 to the causative pressure difference. 

Even though this approximation serves a good 

purpose for rough engineering estimations, in this 

paper preference is given to a more precise, dif-

ferential definition based on the intensive quanti-

ties specific volume 𝑣 or density 𝜌: 

𝐾 = −𝑣
d𝑝

d𝑣
= 𝜌

d𝑝

d𝜌
 (2) 

Assuming ideal gas behaviour and a general pol-

ytropic process, the following relation holds true: 

𝑝𝑣𝑛 =
𝑝

𝜌𝑛
= const. (3) 

By differentiating the pressure with respect to 

density, one obtains an expression for the bulk 

modulus: 

d𝑝

d𝜌
= 𝑛

𝑝

𝜌
→ 𝐾 = 𝑛 ⋅ 𝑝 (4) 

Hence, the bulk modulus of an ideal gas undergo-

ing a polytropic expansion or compression is di-

rectly proportional to the respective polytropic 

exponent 𝑛.  

For an isothermal process, 𝑛 assumes a value 

of unity such that the bulk modulus 𝐾 corre-

sponds to the static pressure 𝑝 which the gas is 

subjected to. For isentropic processes, 𝑛 equals 

the isentropic exponent 𝑘 which – for ideal gases 

– is given by the ratio 𝜅 of specific heats at con-

stant pressure and volume 𝑐𝑝/𝑐𝑣 [9]. It can there-

fore be concluded that the bulk modulus of an 

ideal gas is 𝑘 = 𝑐𝑝/𝑐𝑣 times larger when com-

pressing the fluid isentropically rather than iso-

thermally. For diatomic gases (e.g. O2 or N2), the 

isentropic exponent 𝜅 and hence the ratio of both 

bulk moduli equals 7/5 = 1.4 which corresponds 

to a difference of 40 % in fluid stiffness. Since 

these two quite different values were both deter-

mined from equation (2), it is obvious that this 

relationship does not provide a unique definition 

of the bulk modulus of ideal gases. 

A similar behaviour is to be expected for non-

ideal gases and liquids as well. It is therefore ev-

ident that the bulk modulus of any substance must 

depend on the way in which the change of state, 

characterised by the pressure change per density 

change, is performed. In order to obtain a more 

hands-on formulation of this change of state, the 

thermal equation of state is resorted to.  

2.2. Thermal equation of state 

The thermal equation of state describes the rela-

tionship between density 𝜌, temperature 𝑇 and 

pressure 𝑝 of a certain medium. In general, any 

density change d𝜌 can be decomposed into con-

tributions due to pressure change d𝑝 and due to 

temperature change d𝑇: 

Group J Fundamentals Paper J-2 525



d𝜌 = (
𝜕𝜌

𝜕𝑝
)

𝑇
d𝑝 + (

𝜕𝜌

𝜕𝑇
)

𝑝
d𝑇  (5) 

In the above equation, the partial derivative 
(𝜕𝜌/𝜕𝑝)𝑇 refers to the density change per pres-

sure change at constant temperature; accordingly, 

the expression (𝜕𝜌/𝜕𝑇)𝑝 denotes the density 

change per temperature change at constant pres-

sure. The latter differential quantity can be ex-

pressed through the (volumetric) isobaric ther-

mal expansion coefficient 𝛾𝑝 [1]. This spatial 

counterpart of the linear thermal expansion coef-

ficient known from the analysis of solids is de-

fined as follows: 

𝛾𝑝 ≔
1

𝑣
(

𝜕𝑣

𝜕𝑇
)

𝑝
= −

1

𝜌
(

𝜕𝜌

𝜕𝑇
)

𝑝
  (6) 

Based on the above definition and the differential 

thermal equation of state, the ratio d𝑝/d𝜌 re-

quired to evaluate equation (2) is obtained: 

𝐾 = 𝜌
d𝑝

d𝜌
= 𝜌

1 − (
𝜕𝜌
𝜕𝑇

)
𝑝

d𝑇
d𝜌

(
𝜕𝜌
𝜕𝑝

)
𝑇

                                    

     = 𝜌 (
𝜕𝜌

𝜕𝑝
)

𝑇

−1
(1 + 𝜌𝛾𝑝

d𝑇

d𝜌
) (7) 

Other than the fluid properties 𝜌, (𝜕𝜌/𝜕𝑝)𝑇 and 

𝛾𝑝, the bulk modulus still depends on the yet un-

determined ratio of temperature change per den-

sity change, i.e. the way how the compression or 

expansion is conducted. This implies that the bulk 

modulus defined by equations (1) or (2) cannot be 

a fluid property in the strict sense, since different 

bulk moduli could be observed for the same fluid 

if the thermodynamic boundary conditions were 

changed.  

For arbitrary boundary conditions and fluid 

properties, the theoretical determination of the 

differential d𝑇/d𝜌 is very demanding and, in 

many cases, (currently) not possible. Most appli-

cations, however, require only knowledge of the 

bulk modulus for two particular changes of state 

where certain thermodynamic quantities are kept 

constant. For these two special cases, an exact re-

lationship between the temperature and density 

change can be specified such that a theoretical de-

termination of the respective bulk moduli is pos-

sible. 

The lowest bulk modulus is to be expected if 

the density change occurs at constant tempera-

ture, i.e. the compression or expansion is isother-

mal (d𝑇 = 0). Such an isothermal state of state 

can be assumed if the density change of a fluid 

element happens at such a low rate that all heat 

supplied can be dissipated to the environment of 

the element (“thermal reservoir”). The bulk mod-

ulus which can be observed during such a com-

pression or expansion is therefore referred to as 

the isothermal bulk modulus 𝐾𝑇: 

𝐾𝑇 ≔ 𝜌 (
𝜕𝜌

𝜕𝑝
)

𝑇

−1
 (8) 

If, on the other hand, the change of state occurs 

so rapidly that the compressed or expanded fluid 

element cannot exchange heat with its surround-

ings and, additionally, dissipative effects do not 

occur, the fluid resists compression as much as 

possible. Because the entropy 𝑠 does not change 

during such a lossless change of state (d𝑠 = 0), 

the respective bulk modulus is termed isentropic 

bulk modulus 𝐾𝑠: 

𝐾𝑠 ≔ 𝜌 (
𝜕𝜌

𝜕𝑝
)

𝑠

−1
= 𝐾𝑇 [1 + 𝜌𝛾𝑝 (

𝜕𝑇

𝜕𝜌
)

𝑠
] (9) 

Determining the relationship between tempera-

ture and density changes for isentropic processes 

requires additional relationships. These are pro-

vided by the caloric equation of state and the fun-

damental thermodynamic equation. 

2.3. Caloric equation of state 

The caloric equation of state establishes a rela-

tionship between the pressure, the temperature 

and the energy content of a substance. If the en-

ergy content is represented by the specific en-

thalpy ℎ, the general form of the caloric equation 

of state reads: 

dℎ = (
𝜕ℎ

𝜕𝑇
)

𝑝
d𝑇 + (

𝜕ℎ

𝜕𝑝
)

𝑇
d𝑝 (10) 

The change of enthalpy with temperature at con-

stant pressure is known as the isobaric specific 

heat capacity 𝑐𝑝: 

𝑐𝑝 = (
𝜕ℎ

𝜕𝑇
)

𝑝
 (11) 

Note that even though this property represents the 

enthalpy change per temperature change at con-

stant pressure, the property itself is generally not 

constant with respect to pressure.  

For the pressure-induced change in enthalpy, 

the following relationship can be derived using 

the second law of thermodynamics [9]: 

(
𝜕ℎ

𝜕𝑝
)

𝑇
= 𝑣 [1 −

𝑇

𝑣
(

𝜕𝑣

𝜕𝑇
)

𝑝
] = 𝑣(1 − 𝑇𝛾𝑝) (12) 
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By incorporating the thermal equation of state in 

conjunction with the definition of the isothermal 

bulk modulus, the pressure differential in equa-

tion (13) can be replaced by a density change:  

dℎ = [𝑐𝑝 + 𝑣𝛾𝑝𝐾𝑇(1 − 𝑇𝛾𝑝)]d𝑇 

      +𝐾𝑇
1−𝑇𝛾𝑝

𝜌2 d𝜌 (13) 

If it is known how the enthalpy changes with re-

spect to temperature and density for an isentropic 

process, the desired differential (𝜕𝑇/𝜕𝜌)𝑠 can be 

calculated from the previous equation. This infor-

mation is obtained by incorporating the funda-

mental thermodynamic equation. 

2.4. Fundamental thermodynamic equation 

The fundamental thermodynamic equation com-

bines the statements of the first and second law of 

thermodynamics and therefore introduces con-

straints which limit the possibilities how a ther-

modynamic process can happen. With the spe-

cific enthalpy ℎ, its statement can be expressed as 

follows [1]: 

𝑇d𝑠 = dℎ −
d𝑝

𝜌
 (14)  

Again, the pressure change 𝑑𝑝 can be substituted 

and the following expression is obtained: 

𝑇d𝑠 = (𝑐𝑝 −
𝑇𝛾𝑝

2𝐾𝑇

𝜌
) d𝑇 −

𝑇𝛾𝑝𝐾𝑇

𝜌2 d𝜌 (15) 

Since for an isentropic process d𝑠 equals zero, the 

temperature change per respect to density change 

is given by: 

lim
d𝑠→0

(
d𝑇

d𝜌
) = (

𝜕𝑇

𝜕𝜌
)

𝑠
=

𝑇𝛾𝑝𝐾𝑇

𝜌(𝜌𝑐𝑝−𝑇𝛾𝑝
2𝐾𝑇)

  (16) 

Since the isobaric thermal expansion coefficient 

is virtually always positive (with a few excep-

tions such as liquid water in the temperature 

range 0 °C < 𝑇 < 4 °C at standard pressure), 

an isentropic increase of density is invariably as-

sociated with an increase in temperature. 

By substituting the above relation into equa-

tion (9), one arrives at the following identity [3]: 

𝐾𝑠 =
𝐾𝑇

1−
𝑇𝛾𝑝

2 𝐾𝑇

𝜌𝑐𝑝

 (17) 

Though not new, this equation is not commonly 

encountered in mechanical engineering literature.  

The isentropic bulk modulus 𝐾𝑠 constitutes the 

upper limit of resistance that a fluid can offer to a 

change in density induced by a uniformly acting 

pressure change. Therefore, for real, frictional 

and lossy density changes, the following inequal-

ity applies: 

𝐾𝑇 < 𝐾 < 𝐾𝑠 (18) 

The equation above is an inequality since in real-

ity, neither isentropic nor strictly isothermal pro-

cesses are possible.  

The reason why the isentropic bulk modulus of 

a given substance is always higher than the re-

spective isothermal bulk modulus can be vividly 

explained by visualising how the fluid density de-

pends on the pressure and temperature. A plot of 

the density of water versus temperature and pres-

sure is provided in Figure 1. 

 

Figure 1: Density of water as a function of pressure 

and temperature. 

As can be seen, a lower temperature (note the re-

versed orientation of the temperature axis) and a 

higher pressure generally correspond to a higher 

density. If the pressure is increased by d𝑝 at iso-

thermal conditions, one moves along a line of 

constant temperature, i.e. 𝑇 = const. or d𝑇 = 0. 

Clearly, the pressure increase is associated with a 

higher density, i.e. d𝜌 > 0. If the same pressure 

increase d𝑝 were performed isentropically, the 

pressure rise would be associated with an in-

crease of temperature d𝑇 > 0. The temperature 

change can be calculated from the following 

identity which is derived by combining equations 

(16) and definition (9): 

 

Constant temperature 

Constant pressure 
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(
𝜕𝑇

𝜕𝑝
)

𝑠
= (

𝜕𝑇

𝜕𝜌
)

𝑠
(

𝜕𝜌

𝜕𝑝
)

𝑠
=

𝑇𝛾𝑝

𝜌𝑐𝑝
  (19) 

For water at standard pressure and a temperature 

of 20 °C, this expression assumes a value of ap-

proximately 1.5∙10-3 K/bar, i.e. a pressure in-

crease of 1000 bar would increase the water’s 

temperature by around 1.5 K. Due to the increase 

of temperature and the subsequent (small) expan-

sion, the gross density increase gained through in-

creasing the pressure d𝑝 is reduced. Hence, for 

the same pressure rise, the isentropic compres-

sion results in a smaller increase of density as 

compared to the isothermal case, i.e. the isentrop-

ically compressed fluid is stiffer than its isother-

mal counterpart. 

Based on the isentropic bulk modulus, the 

speed of sound can be calculated. 

2.5. Speed of sound 

The speed of sound indicates the speed at which 

pressure and velocity disturbances propagate in a 

fluid at rest. The mathematical definition of the 

speed of sound in its present-day form dates back 

to LAPLACE [10]. As early as 1816, LAPLACE 

discovered that sound waves propagate almost 

without losses, so that the assumption of an isen-

tropic change of state seems permissible. There-

fore, the following identity can be derived [3]: 

𝑎𝑠 ≔ √(
𝜕𝑝

𝜕𝜌
)

𝑠
  (20) 

By using definition (9), one can express the speed 

of sound through the isentropic bulk modulus and 

the density: 

𝑎𝑠 = √
𝐾𝑠

𝜌
  (21) 

If a bulk modulus other than the isentropic one is 

used for calculating the speed of sound, the prop-

agation speed will be underestimated. When 

NEWTON tried to calculate the speed of sound 

of air in his famous principia published in 1687, 

he assumed an isothermal process and thus ar-

rived at an expression which is wrong by a factor 

of √𝐾𝑠/𝐾𝑇 ≈1.18, i.e. by roughly 20 % [11].    

3. THERMODYNAMIC CONSISTENCY 

With the exception of viscosity, all essential ther-

mophysical fluid properties are linked by relation 

(17). Since the equation is based on first princi-

ples and does not require the validity of any par-

ticular assumptions, the relationship applies to 

any fluid as long as it can be treated as a contin-

uum. 

Hence, any violation of this equation by meas-

ured fluid data or a fluid property model indicates 

a violation of fundamental physical laws. Here 

onwards, data which does not satisfy equation 

(17) is referred to as thermodynamically incon-

sistent. Due to limited accuracy of measuring de-

vices, experimentally determined fluid properties 

will always be thermodynamically inconsistent to 

a certain degree. It is therefore important to de-

fine reasonable cut-off values above which one 

can actually speak of a thermodynamically in-

consistent data set. 

In order to obtain an indication of the degrees 

of consistency that can practically be achieved, 

published fluid property models are analysed. 

3.1. Assessment of published fluid 
property models (I) 

The analysis of thermodynamic consistency is 

demonstrated using the fluid property model pre-

sented by FLUCON GmbH [12]. The model pro-

vides equations for the calculation of all relevant 

thermophysical fluid properties as functions of 

pressure and temperature. 

Model equations 

Since the equations of the FLUCON model are 

numerical value equations, the temperature 𝑇 has 

to be provided in K and the gauge pressure 𝑝g (i.e. 

the difference between actual pressure and atmos-

pheric pressure) must be inserted in bar. For the 

density, the following model equation is pro-

posed: 

𝜌(𝑝, 𝑇) =
𝜌(𝑇)

1−𝑚1
𝜌

⋅ln(
𝑚2

𝜌
+𝑚3

𝜌
⋅𝑇+𝑚4

𝜌
⋅𝑇2+𝑚5

𝜌
⋅𝑇3+𝑝g

𝑚2
𝜌

+𝑚3
𝜌

⋅𝑇+𝑚4
𝜌

⋅𝑇2+𝑚5
𝜌

⋅𝑇3
)

  (22) 

In this equation, the function 𝜌(𝑇) refers to the 

temperature-dependent density at a gauge pres-

sure of 𝑝g = 0 bar and 𝑚1
𝜌

… 𝑚5
𝜌

 are fluid-spe-

cific constants. The purely temperature-depend-

ent density is given by: 

𝜌(𝑇) = 𝜌0(1 − 𝑇 ⋅ 𝛾0)  (23) 

The equation above implies that the density at a 

gauge pressure 𝑝g = 0 bar (i.e. ambient pressure) 

varies linearly with temperature. Hence, the 
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fluid-specific constant 𝛾0 can be interpreted as a 

thermal expansion coefficient, whereas the con-

stant 𝜌0 can be thought of as the density at the 

virtual temperature 𝑇 = 0 K. 

The isentropic bulk modulus is calculated 

from the following equation: 

𝐾𝑠(𝑝, 𝑇) =
𝐾𝑇(𝑝,𝑇)

1−
(𝜌0𝛾0)2⋅𝑇

𝜌3(𝑝,𝑇)⋅𝑐𝑝(𝑝,𝑇)
⋅𝐾𝑇(𝑝,𝑇)

 (24) 

The isothermal bulk modulus is obtained by in-

serting the density equation (22) into definition 

(8). The specific heat capacity at constant pres-

sure 𝑐𝑝(𝑝, 𝑇) is calculated as: 

𝑐𝑝(𝑝, 𝑇) = 𝑐𝑝(𝑇) −
2⋅𝑇⋅𝛾0

2

𝜌0(1−𝑇⋅𝛾0)3 ⋅ 𝑝g (25) 

Analogous to the nomenclature used for the den-

sity, 𝑐𝑝(𝑇) denotes the purely temperature-de-

pendent heat capacity at ambient pressure. This 

quantity is given by: 

𝑐𝑝(𝑇) =
(𝜌0⋅𝛾𝑝)

2
⋅𝑇

𝜌3(𝑇)⋅[
1

𝐾𝑇(𝑇)
−

1

𝐾𝑠(𝑇)
]
 (26) 

The function 𝐾𝑇(𝑇) is calculated from 𝐾𝑇(𝑝, 𝑇) 

for 𝑝g = 0 bar. The temperature-dependent isen-

tropic bulk modulus 𝐾𝑠(𝑇) is given by: 

𝐾𝑠(𝑇) = 𝜌(𝑇) ⋅ 𝑎𝑠
2(𝑇) (27) 

The speed of sound at ambient pressure 𝑎𝑠(𝑇) is 

modelled through a simple polynomial expres-

sion of second order: 

𝑎𝑠(𝑇) = 𝑚1
𝑎 + 𝑚2

𝑎 ⋅ 𝑇 + 𝑚3
𝑎 ⋅ 𝑇2 (28) 

The constants 𝑚1
𝑎, 𝑚2

𝑎 and 𝑚3
𝑎 are specific for 

each fluid. The general expression for the speed 

of sound is calculated based on the isentropic 

bulk modulus 𝐾𝑠(𝑝, 𝑇), the density 𝜌(𝑝, 𝑇) and 

the density 𝜌(𝑇) at zero gauge pressure: 

𝑎𝑠(𝑝, 𝑇) = √𝐾𝑠(𝑝, 𝑇)
𝜌(𝑇)

𝜌2(𝑝,𝑇)
 (29) 

Analysis of thermodynamic consistency 

With knowledge of the equations presented in the 

previous section, all fluid properties required to 

analyse the thermodynamic consistency of the 

FLUCON model can be calculated. The examina-

tion is carried out for a transmission oil whose pa-

rameters were determined experimentally by 

FLUCON. In order to ensure that all equations 

and parameters were correctly transferred into the 

MATLAB evaluation routine, the computed val-

ues of the individual fluid properties were com-

pared to a reference chart provided by FLUCON. 

The thermodynamic inconsistency of the 

FLUCON model is quantified by rearranging 

equation (18) such that the left-hand side equals 

unity: 

1 =
𝐾𝑠

𝐾𝑇
(1 −

𝑇𝛾𝑝
2

𝜌𝑐𝑝
𝐾𝑇) (30) 

Any deviation of the right-hand side from unity 

indicates thermodynamic inconsistency. The rel-

ative inconsistency 𝜀 can therefore be quantified 

by subtracting the deviant right-hand side from 

unity: 

𝜀 = 1 −
𝐾𝑠

𝐾𝑇
(1 −

𝑇𝛾𝑝
2

𝜌𝑐𝑝
𝐾𝑇) (31) 

A plot for the calculated relative inconsistency 𝜀 

as a function of gauge pressure 𝑝g and relative 

temperature 𝑇rel is provided in Figure 2. 

Figure 2: Thermodynamic inconsistency of the FLU-

CON model of a transmission oil as a func-

tion of gauge pressure and temperature. 

As can be seen, the degree of inconsistency is be-

low 5 % in the covered range of pressures and 

temperatures. Along the isobaric line correspond-

ing to a gauge pressure of 𝑝g = 0 bar, the relative 

inconsistency is zero for all analysed tempera-

tures. The inconsistency increases with the pres-

sure level at a rate of Δ𝜀/Δ𝑝𝑔 ≈ 0.0125 %/bar. 

This behaviour can be explained by examining 

the equations constituting the FLUCON model: 

Even though the equations relating different fluid 

properties with each other appear to be physically 
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sound, most of their statements are not true for 

pressures 𝑝g ≠ 0 bar. An illustrative example of 

the described properties is given by equation (24). 

For zero gauge pressure, the statement of equa-

tion (24) is identical to the one of equation (17) 

since for 𝑝g = 0, 𝜌(𝑝, 𝑇) = 𝜌(𝑇) and hence 𝛾𝑝 =
𝛾0. For all other pressures, this equation is inva-

lid, since generally 𝛾𝑝 = 𝛾𝑝(𝑝, 𝑇). 

Despite these errors, the extent of thermody-

namic inconsistency of the FLUCON model is 

more than acceptable, since the metrological lim-

its caused by finite sensor resolutions are typi-

cally of the same order of magnitude.  

3.2. Assessment of published fluid 
property models (II) 

Another example is delivered by examining the 

fluid property model presented by DRUMM for 

consistency [4]. The model provides equations 

for the most important hydraulic fluid properties 

like density, viscosity, speed of sound and isen-

tropic bulk modulus. An equation to estimate the 

mass-specific heat capacity is not provided. All 

fluid properties are modelled as functions of pres-

sure and temperature. 

Model equations 

In order to model the dependency of the individ-

ual fluid properties on pressure and temperature, 

mostly polynomial expressions are used. Again, 

all model equations are numerical value equa-

tions, such that the relative temperature 𝑇rel has 

to be provided in °C and the gauge pressure 𝑝g 

must be given in bar. The model equation for the 

density reads: 

𝜌(𝑝, 𝑇) = 𝑚1
𝜌

+ 𝑚2
𝜌

⋅ 𝑇rel + 𝑚3
𝜌

⋅ 𝑝g 

               +𝑚4
𝜌

√𝑝g + 𝑚5
𝜌

+ 𝑚6
𝜌

⋅ 𝑇rel ⋅ 𝑝g 

               +𝑚7
𝜌

⋅ 𝑇rel
2  (32) 

The model equation for the sound speed is given 

by the following expression: 

𝑎𝑠(𝑝, 𝑇) = 𝑚1
𝑎 + 𝑚2

𝑎 ⋅ 𝑇rel + 𝑚3
𝑎 ⋅ 𝑝rel 

                 +𝑚4
𝑎√𝑝g + 𝑚5

𝑎 + 𝑚6
𝑎 ⋅ 𝑇rel ⋅ 𝑝g 

                 +𝑚7
𝑎 ⋅ 𝑇rel

2  (33) 

Because the model presented by DRUMM does 

not provide a model equation for the specific heat 

capacity, a different approach is chosen in order 

to analyse its thermodynamic consistency. Since 

a thermal equation of state 𝜌(𝑝, 𝑇) as well as an 

equation for the speed of sound 𝑎(𝑝, 𝑇) are pro-

vided, the specific heat capacity can be calculated 

by rearranging equation (17): 

𝑐𝑝(𝑝, 𝑇) =
𝑇𝛾𝑝

2

𝜌(
1

𝐾𝑇
−

1

𝐾𝑠
)

=
𝑇(

𝜕𝜌

𝜕𝑇
)

𝑝

2

𝜌2[
1

(
𝜕𝑝
𝜕𝜌

)
𝑇

−
1

𝑎𝑠
2]

 (34) 

This equation is actually used in scientific appli-

cations for determination of the specific heat ca-

pacity, particularly if direct calorimetric meas-

urements are not possible because the pressure 

level of interest is too high [13]. 

If the coefficients 𝑚𝑖
𝜌

 and 𝑚𝑖
𝑎 which DRUMM 

estimated for water are used to calculate values 

𝑐𝑝(𝑝, 𝑇), the results can be compared to literature 

values for the specific heat capacity of water, 

taken e.g. from the commonly accepted IAPWS 

model [2]. Thus, even without knowledge of all 

quantities appearing in equation (17), the thermo-

dynamic consistency of the DRUMM model can 

be assessed.  

Figure 3: Calculated specific heat capacity of water as 

a function of pressure and temperature. 

The specific heat capacity 𝑐𝑝 which has been cal-

culated from the model equations of DRUMM 

and the corresponding parameters for water is 

plotted as a function of the gauge pressure and 

relative temperature in Figure 3 (curved surface). 

For comparison, the same quantity has been com-

puted from the IAPWS model and is shown in the 

diagram, too (appearing as a plane) [2]. As can be 

seen, large differences between the DRUMM 
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model and the commonly accepted IAPWS da-

taset exist over a wide range of temperature and 

pressures. The maximum and minimum values of 

the specific heat capacities from the IAPWS 

model vary by less than 4 % in the analysed 

range, whereas the maximum 𝑐𝑝 calculated from 

the DRUMM equations exceeds the minimal 

value by more than 150 %. The calculated values 

of the specific heat capacity obviously contradict 

published and accepted values. Clearly, even 

without calculating the degree of thermodynamic 

consistency 𝜀, it can be concluded that the ana-

lysed fluid property model is thermodynamically 

inconsistent. 

The main reason for the observed behaviour of 

the DRUMM model can be found in the structure 

of the model equations themselves: Since – ac-

cording to equation (35) – the slope of the density 

function is vital for accurate determination of the 

specific heat capacity, the gradients (𝜕𝜌/𝜕𝑇)𝑝 

and (𝜕𝜌/𝜕𝑝)𝑇 have to be known with high accu-

racy. Because of the polynomial approach used, 

the model equations of the DRUMM model can-

not properly map the curvature of the density 

function, even if the values of the density func-

tion might be correct. 

Thus, even if the measurements on which the 

published model parameters are based on were 

carried out with perfect accuracy, a thermody-

namically fluid property model could not be cre-

ated with the used model equations. Hence, it is 

important to choose model equations of sufficient 

mathematical complexity which are capable of 

correctly mapping the relevant features of the 

course of the desired property as a function of 

pressure and temperature. 

4. SUMMARY AND OUTLOOK 

The findings of the present paper can be summa-

rised by the following statements: 

 Accurate fluid properties are vital for accurate 

predictions of system and component perfor-

mance in the field of fluid power. 

 Practising engineers are faced with the prob-

lem of ascertaining the accuracy of experi-

mentally determined fluid properties. 

 An equation was derived which establishes a 

connection between the most important fluid 

properties density, bulk modulus, thermal ex-

pansion coefficient and specific heat at con-

stant pressure. 

 Based on this identity, the thermodynamic 

consistency of experimentally determined 

fluid properties presented in the form of a 

fluid property model can be assessed. The 

more the data violates the equation, the higher 

the degree of thermodynamic inconsistency. 

 Thermodynamic inconsistency should be be-

low 5 % to ensure accurate prediction of com-

ponent or system behaviour. 

 Thermodynamically inconsistent fluid prop-

erties should, if at all, be used very carefully 

because of the dangers outlined in the exam-

ples of chapter 1. 

 The commonly encountered, purely mechani-

cal definition of the bulk modulus – like equa-

tion (2) – does not suffice to uniquely expli-

cate which quantity is referred to. Depending 

on the thermodynamic boundary conditions 

during compression or expansion, the ob-

served bulk modulus may vary significantly. 

 The highest bulk modulus is encountered for 

an isentropic process, whereas the lowest bulk 

modulus is observed if the fluid’s density 

change happens at constant temperature, i.e. 

if the process is isothermal. 

NOMENCLATURE 

𝛾𝑝 Isobaric thermal expansion coefficient K-1 

𝜀 Degree of thermodyn. inconsistency % 

𝜂 Dynamic viscosity Pa∙s 

𝜅 Ratio of specific heats 1 

𝜇𝐽𝑇 Joule-Thomson coefficient 1 

𝜌 Density kg∙m-3 

𝑎𝑠 Speed of sound m∙s-1 

𝐴 Cross-sectional area m² 

𝑐𝑝 Specific heat at constant pressure J∙kg-1∙K-1 

𝑐𝑣 Specific heat at constant volume J∙kg-1∙K-1 

𝑓(𝑥) Arbitrary function of 𝑥  

ℎ Specific enthalpy J∙kg-1 

𝑖 Integer number 1 

𝑘 Isentropic exponent 1 

𝐾 Bulk modulus, not specified further Pa 

𝐾𝑠 Isentropic bulk modulus Pa 

𝐾𝑇 Isothermal bulk modulus Pa 

𝐿 Length m 

ln(𝑥) Natural logarithm of 𝑥 1 

𝑚𝑖
𝑥 𝑖th constant of the state equation for 𝑥  

𝑛 Polytropic exponent 1 

𝑝 Pressure Pa 

𝑝g Gauge pressure bar 

Δ𝑝 Pressure drop Pa 

𝑠 Specific entropy J∙kg-1 

Group J Fundamentals Paper J-2 531



𝑇 Temperature K 

𝑇rel Relative temperature °C 

𝑣 Specific volume m³∙kg-1 

𝑉 Volume m³ 

d𝑓/d𝑥 Total derivative of 𝑓 with respect to 𝑥  

𝜕𝑓/𝜕𝑥 Partial derivative of 𝑓 with respect to 𝑥  
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