
1

A NOVEL SAAS DEVELOPMENT PLATFORM FOR FLUID POWER

STANDARD DRIVES

Heiko Baum1*

1FLUIDON Gesellschaft für Fluidtechnik mbH, Jülicher Straße 338a, 52070 Aachen, Germany

* Corresponding author: Tel.: +49 241 980 935 61; E-mail address: heiko.baum@fluidon.com

ABSTRACT

Today, it is state of the art to use 0D/1D simulations in the development of complex fluid technology

drives, as this is the only way to evaluate the dynamic interactions of the system components.

However, when modifying existing drives, developers often refrain from simulative validation

because they consider the changes to be minor and/or rely on the positive experiences of the past.

Consequently, design errors are only discovered in practical use, leading to production disruptions

and costly troubleshooting.

A new type of SaaS development platform closes this gap and is aimed at companies with limited

capacities and budgets. The platform enables companies to engage engineering service providers in

creating customized design workflows. The paper illustrates the platform's application in a mobile

hydraulic drive example, detailing the orchestration of pre- and post-processing tasks through a web

browser interface. The familiar Excel spreadsheet used for static calculations continues to serve for

parameterization source, maintaining the user's established design process while leveraging the

precision of 0D/1D simulation. The simulation results are automatically converted into a format

familiar to users, either as an Excel spreadsheet or a PowerPoint presentation for documentation and

sales support.

Keywords: SaaS development platform, orchestrated design workflow, FMU, Spreadsheet driven

simulation, automatic result reporting

1. INTRODUCTION

Today, the use of 0D/1D simulation is largely standard in the development of complex fluid power

drives. This is the only way to test and evaluate the dynamic interactions of all installed components

as a system. The buzzwords "digital twin" and "virtual commissioning" are not on everyone's lips for

nothing. The situation is different with fluid power "standard drives". These drives, which are

manufactured in small batches, can be found in mechanical and plant engineering, the raw materials

industry or in mobile machinery or agricultural machinery. In terms of their total number, however,

these drives form a quantitatively significant group of fluid power drives.

If a standard drive is to be modified at the customer's request or if a new product generation is planned,

simulative validation of the changes is generally still not carried out. When asked about the reasons

for this, the justification given is that the new design is only a minor modification or scaling of an

existing drive for which there is extensive positive practical experience. The project engineer is then

often satisfied with static calculations, e.g. in an Excel spreadsheet. However, dynamic interactions

between the components are not considered in this way.

Practical experience shows that this is grossly careless. The simple scaling of components or even a

change to the piping layout requested by the customer poses considerable risks regarding the dynamic

behavior of the fluid power drive. If, for example, components need to be scaled up, their operating

points will shift. It must then be considered that the operating behavior of many fluid power

2

components changes non-linearly when the operating point is shifted. Even if the same components

are only spatially arranged differently or the piping is modified in another way, the dynamic

interactions between the components change. These influences can only be considered insufficiently

or not at all by quasi-static calculations.

If design errors are only recognized during practical use - i.e. too late - the consequences are no less

serious than with complex systems. Production lines or machines in which the drives are installed

come to a standstill and must be repaired at great expense. A simulation for troubleshooting, which

is needed quickly and is therefore expensive, is often the only way to identify the problem and develop

a solution.

Many of these problems could be avoided if 0D/1D simulation could be used more often in the design

of supposedly simple fluid power drives. The simulation ensures that a new or reconfigured drive

meets the customer's technical boundary conditions and requirements.

To achieve this goal, it is necessary to make 0D/1D simulation as accessible as possible for all those

users who have yet little experience in simulation. What was missing until now was a development

platform specialized for this user group.

2. A FLEXIBLY SCALABLE SAAS DEVELOPMENT PLATFORM

Cube could be just the right platform, as it has been deliberately designed to allow experienced users

to prepare pre-configured workflows for the development, testing and marketing of fluid power

drives. These workflows can then be used by less experienced users by giving them access to Cube.

The workflows release users from routine tasks and allow them to concentrate better on their main

task of interpreting the results. The following section outlines the basic procedure.

Each Cube account has a workspace in which users can create projects, either from scratch or by

using templates. The most important features of this workspace are outlined in Figure 1.

Figure 1: Workspace and Collaboration

In general, a wide range of tasks can be implemented in Cube projects. However, this paper focuses

specifically on the presentation of workflows for the repetitive execution of tasks in the field of the

simulative design of fluid power drives. For example, as shown in Figure 1, Project A could be a

workflow for the simulation of fluid power drives, Project B could be a workflow for processing

simulation results or measurement data from the test field, and Project C could be used to configure

a simulation model on the Cube RT system required for the development of control systems running

a real-time digital twin.

Every Cube user who has been invited to a workspace by an administrator is a member of that

workspace. Members can work on their own projects or on a joint project. The workspace area gives

3

members an overview of the distribution of available resources. Resources are CPU cores, storage

space on the cloud platform or Cube RT systems. The resources are generally located in a shared pool

and can be allocated to individual projects as required.

As is usual with modern SaaS applications, a Cube account is always linked to a "plan". The plan

describes the different pricing or subscription models available to users, what additional resources or

additional services cost and what other services or support options are included. The basic "Cube

Free" plan, in which a single workspace with a single project can be created, is free of charge.

Figure 2 summarizes the important benefits for a company when introducing the Cube SaaS

application. A SaaS application is available immediately after the initial registration, which enables

companies to introduce the new solution quickly. This also means a lower initial investment compared

to traditional software development and deployment, as companies do not need to purchase expensive

hardware or software licenses. Instead, they pay monthly or annual subscription fees.

SaaS applications are accessible via the Internet, which means that users can access their account at

any time, from different locations and with different end devices. This is an advantage for modern

company-specific working time models. In addition, thanks to the intuitive user interface typical of

browser applications, users can find their way around the SaaS application quickly and without a

great deal of training.

Figure 2: Flexibility, Scalability, and Security

Scalability and high availability are further advantages of SaaS applications (centre section of Figure

2). Storage space or computing power can be added at short notice by changing the plan, allowing

companies to react flexibly to increased requirements without having to carry out expensive hardware

upgrades.

In addition, SaaS applications guarantee high availability, as the operators of the data centers invest

in redundancy and high-availability solutions. SaaS applications are also updated automatically,

which relieves companies of the need to take care of maintenance and updates themselves and ensures

that its users always have access to the latest functions and security patches.

Another important point in favor of SaaS applications is data security. In the case of Cube, the data

is stored exclusively in European data centers. In addition to the security measures of the data centers,

all areas of Cube that can be accessed via the Internet connection are secured separately in accordance

with the state of the art. This measure provides companies with a level of security that generally goes

beyond what would be practical for smaller companies or organizations to implement if they had to

provide it themselves.

An interesting additional feature of the Cube development platform is shown on the right-hand side

of Figure 2. Cube provides interfaces to access external devices or data sources from the SaaS

4

applications. This is used, for example, to communicate with Cube's own RT system [1], access

measurement data or exchange live data with other cloud applications.

The steps required to execute a workflow on Cube are described qualitatively in Figure 3. In

preparation, the user has created a project in the workspace, set up a workflow in it, loaded any

required data or simulation models and specified the CPU cores required for execution. The prepared

project does not yet block any of the available computing resources. Scripts, simulation models and

data only take up storage space in the cloud. Only when a compute node on which the workflow is to

be executed is created by the user (Figure 3, top left), the specified number of CPU cores is allocated.

Once the compute node is ready for use, the project is started.

Figure 3: Computing Power on Demand

Both the start of the workflow and the interaction with the running workflow can be carried out using

any end device, as illustrated once again in the right-hand section of Figure 3. For example, the tablet

or mobile phone is used to check whether the execution has been completed. If necessary, the

configuration of the workflow is now updated, new data is loaded into the workflow and a new

execution is started.

If the results meet the requirements, the occupied computing resources can be released. To do this,

the user deletes the compute node, and the CPU cores are once again available to all workspace

members. The data generated during execution is automatically moved from the compute node to the

cloud storage, where the user can continue to access it at any time.

If free computing resources are still available in the workspace during the execution of compute node

1, further projects can be executed, as shown in Figure 3 using the example of compute node 2.

3. DEVELOPMENT AS A TEAM ACHIEVEMENT

The possibility for several users to work together on projects in the Cube workspace offers companies

the opportunity to utilize contemporary forms of development collaboration. One of these concepts,

"development as a team achievement", and the resulting opportunities for companies in product

development are presented below.

The concept outlined in Figure 4 emphasizes the idea that the development of products, services or

projects is most effectively achieved through the collaboration and coordinated work of a team rather

than individual efforts. The concept thus reflects the reality of many engineering projects and the

importance of teamwork in engineering. This is because engineering projects often require experts

from different disciplines to work together to solve complex problems and drive technical innovation.

5

Figure 4: Engineering as a Team Achievement

The Cube development platform promotes this approach by automatically making the company's

internal experts, as members of the workspace, members of the team. If necessary, the company can

also integrate external service providers into the team by inviting them to join the workspace.

External service providers can leverage the Cube development platform to offer their solutions not

only to a single customer but to multiple companies. (Figure 5).

Figure 5: Engineering as a Service

A service provider for control systems can, for example, make his algorithms or simulation model

available to companies. Cube provides interfaces to protect the specific expertise of the provider. This

enables a business model in which service providers set up workflows, prepare Python modules,

provide measurement data or create visualizations for Cube's animation task and make them available

to Cube users. This can be done directly within an existing project or as a well-documented project

template for the Cube development platform.

4. A SIMULATION WORKFLOW EXAMPLE

As a typical example of a ready-to-use and easily parameterizable Cube workflow, the simulation of

a standard mobile hydraulic drive is presented in the following section. Such a hydrostatic drive

(Figure 6) usually comprises at least one pump and several motors.

6

Figure 6: Overview of the pressure oscillation situation of a hydrostatic drive train

A setup with only two motors was selected for the example. The hydrostats are connected by a piping

system that, depending on the topology of the vehicle, branches out into several segments of different

lengths, which in turn often consist of a combination of steel and hose lines. For the sake of simplicity,

only the pressurised part of the piping system is considered.

To operate the drive in the optimum efficiency range or to enable special operating conditions, all

hydrostats are adjusted individually. This results in a broadband pulsation excitation of the piping

system, which can cause pressure oscillation problems not only between the source and the

consumers, but also between the consumers themselves [2].

In the "classic" design of the piping system, it is almost impossible for reasons of time and resources

to experimentally find the configuration that leads to the lowest pressure pulsation load on the piping

system from the large number of possible variants. This is where the Cube workflow (Figure 7)

comes into play to determine the best configuration for the piping system.

Figure 7: Pressure oscillation workflow of the hydrostatic drive train

7

The workflow consists of eleven tasks, which are arranged in their logical working order. Except for

task 020_simulation, which includes the simulation model of the hydrostatic drive, all other tasks are

described by Python scripts.

Such Python scripts can be freely created by the user, who can also incorporate (install) their own

personal Python module library into the project. However, the Cube environment also offers a

collection of predefined Python modules that users can integrate into their own scripts.

Task 020_simulation of the example workflow is a dedicated DSHplus module that can import

DSHplus simulation models directly [3]. If this task were replaced by Cube's FMI module, the

workflow could run any Linux 64bit Functional Mock-up Unit (FMU) model generated by an FMI-

compliant development tool [4]. Of course, the model parameters of such a FMU must be accessible

to carry out the following parameter study!

At the beginning of a parameter study, it is necessary to define the limits within which the component

parameters are varied and to determine how the results are to be evaluated. Figure 8 shows an Excel

workbook that is set up for this purpose. Excel was chosen as the data input medium to fulfil the

requirement that the workflow should also be usable by non-simulation experts.

Figure 8: Parameterization of the hydrostatic drive train

For installation space reasons, the overall lengths of the piping system must remain constant.

However, the lengths of hoses 1 to 3 can be designed variably between 400 mm and 1000 mm.

Formula relationships in the components automatically adjust the lengths of the remaining steel pipes

accordingly. Other possible variations include internal hose diameters of 12 mm and 16 mm, as well

as the positioning of the T-branch, where the pipe coming from the source (hydrostat 1) to the two

consumers (hydrostat 2 and 3) can be moved from -250 mm to +125 mm from its starting position.

The medium pressure of the system is set to 100 bar. All three hydrostats are modelled as nine-piston

variable displacement units. This means that not only the basic excitation frequency of the pump is

considered, but also higher pump orders as excitation of the pipe system.

Figure 9 shows a screenshot of the Python script of task 015_parameter_variation responsible for

the variation of the design parameter. The source code view of the task is intentionally displayed to

illustrate how straightforward it is to setup parameter variations using publicly available Python

libraries.

The script lines 33 to 38 are used to enter the parameter range to be varied. The script generates a

full-factorial experimental design [5] with 512 parameter sets and stores them directly in the

parameter directory of the task 020_simulation. The simulation module now starts a parallel

calculation making use of all available 32 CPU-Cores and thus utilizing the full performance of the

computer hardware.

8

Figure 9: Python script for parameter variation with full factorial experimental design

However, the detailed results of the 512 simulations are initially of secondary interest to the user.

First and foremost, the user wants to use the parameter variation to ensure that no disruptive resonance

situation occurs in the drive train with the base piping design he has selected and to find out which of

the possible line configurations has the lowest pressure pulsation amplitudes. The pressures at the

hydrostat flanges serve as criteria for the evaluation.

The extraction of all data relevant for the subsequent analysis from the simulation results is carried

out in task 050_fetch_data. The values are consolidated so that, for example, only the maximum

values of the pressures are taken during the simulation run. All values are saved in an Excel file and

can therefore be further analysed offline or processed directly in the workflow.

Within the workflow this is done by the Python script of task 060_pivot_table_analysis (Figure 10).

Figure 10: Python script for pivot analysis

Instead of presenting the Python script editor, as done in Figure 9, the left part of the task window

now shows the UI (user interface) section, in which the user defines the formatting of the pivot table,

which is saved again as an Excel-file for further processing.

9

Figure 11 presents the resulting pivot table, which is an overview of the pressure amplitudes at

hydrostat 3. Colour coding makes it easy to see which pipe system configuration causes higher and

which lower pressure values.

Figure 11: Pivot table of pressure at hydrostat 3

The assignment of the pressure values to a certain piping system configuration is done by the row and

column sorting of the table. The pressure values are sorted line by line first by the two hose diameters,

followed by sorting by the T-branch position and finally by hose length 1. The columns are sorted

first by hose length 2 and then by hose length 3.

The pivot table shows, that the configuration with hose lengths 1 = 1000 mm, 2 = 1000 mm, 3 = 400

mm, diameter 12 mm and T-branch position -250 mm has the highest dynamic pressure pulsation

amplitude at almost 13 bar and is therefore rather unsuitable, whereas, for example, the configuration

with hose lengths 1 = 600 mm, 2 = 400 mm, 3 = 800 mm, diameter 16 mm and T-branch position

+125 mm has a low dynamic pressure pulsation amplitude at approx. 4.4 bar and appears suitable.

However, this finding must still be cross-checked with the pressure pulsation amplitudes at the other

two measuring points to finally evaluate whether the configuration provides the best overall result.

5. DETAILED ANALYSIS OF THE RESULTS

Of course, the developer can also take a closer look at the simulation results at any time. For this

purpose, additional Python script tasks are added to the workflow as needed. Figure 12 shows the

results of the task 080_spectrogram_analysis.

10

Figure 12: Python script for spectrogram analysis

Data source for the diagram is again the pressure signal at the flange of hydrostat 3. At the yellow

lines of the individual excitation orders of the hydrostats it can be clearly seen that all three hydrostats

change their speed. Whenever one of the excitation frequencies "hits" a resonance frequency of the

piping system, the colour changes from yellowish to reddish. The first piping system resonance is at

approximately at 190 Hz. And there are more piping system resonances with even higher pulsation

amplitudes that become visible at higher orders.

For now, it is of interest which pressure oscillation mode of the piping system is associated with this

frequency. The pressure oscillation mode is identified by task 090_pressure_vector_plot (Figure 13).

Figure 13: Python script to create pressure vector diagrams

The resulting diagram visualizes the pressure oscillation situation along the piping’s middle axis vs.

excitation frequency. The visible oscillation mode at 190 Hz, indicated in Figure 13, is the

fundamental /2 resonance frequency of a piping system with both ends closed. However, an

11

investigation or detailed explanation would be another story. For a detailed description and

interpretation of spectrograms and pressure vector plots, please refer to [2].

The compact exploration of the detailed time series results, along with the corresponding diagrams,

demonstrates that the example workflow not only identifies whether the piping system configuration

is favourable or unfavourable but also offers valuable insights into why a particular configuration is

considered as such. This provides users with information regarding which parameters have the most

significant impact on the system's dynamic behaviour.

6. SUMMARY

Using the example of a hydrostatic drive, it was shown how an easy-to-use, yet powerful simulation

workflow can be set up within the Cube SaaS development platform. However, Cube is not limited

to fluid power issues, but was designed as a platform for solving simulation or design issues from all

technical areas. With the FMU plug-in, digital twins from various simulation tools can be integrated

into the platform. Thanks to the flexible composition of the workflows from predefined plug-ins and

Python scripts, Cube can be used to solve a wide range of problems.

REFERENCES

[1] VEL - a modular virtual commissioning environment for mobile machinery, 11th Colloquium

Mobile Hydraulics, September 10, 2020, Karlsruhe, Germany, pp. 133 - 146

[2] Baum H.: Pressure Oscillation Analysis of Hydrostatic Drive Train, O+P, 06-2019, page 36 - 41

[3] DSHplus - Simulation of hydraulic and pneumatic systems in a mechatronic environment,

https://www.fluidon.com/, last visited 01.2024

[4] FMI-standard - Functional Mock-up Interface for Model Exchange and Co-Simulation,

https://fmi-standard.org, last visited 01.2024

[5] Statistical Design of Experiments, https://de.wikipedia.org/wiki/

Statistical_design_of_experiments, last visited 01.2024

