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The paper presents a methodology for calculating the pressure loss in unsteady flows through concentric annular 

channels. The momentum equation in axial direction is solved in the Laplace domain to obtain the unsteady 

radial velocity distribution. Based on the velocity profile, the relation between the Laplace transforms of pressure 

loss and area-averaged flow velocity is derived. A time domain representation of this equation is provided for 

harmonically oscillating flows. For arbitrary temporal distributions of the flow, the inverse Laplace transform of 

the relation between pressure loss and flow velocity has to be derived. Since finding the inverse Laplace 

transform of the exact weighting function for each possible radius ratio is cumbersome, the annular channel flow 

is approximated by a plane channel. An error analysis shows that this approximation introduces errors less than 

1 % for channel geometries down to radius ratios of 0.45.  The approximated weighting function is transformed 

into the time domain by using the residue theorem from complex analysis. The resulting convolution integral can 

be used in one-dimensional hydraulic system simulation software. 
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1 Introduction 

An annular channel is formed if a cylinder (radius 𝑟𝑖) is mounted in a pipe (inner radius 𝑟𝑜), see Figure 1. The 

present paper is limited to concentric annular channels, i.e. the axis of the pipe and the axis of the cylinder 

always coincide. Annular channels appear in various engineering applications ranging from tube heat exchangers 

to spool valve clearances. A key parameter to characterize annular channels is the ratio 𝜚 = 𝑟𝑖/𝑟𝑜 of the cylinder 

radius and the pipe’s inner radius. Since in most hydraulic engineering applications the gap height ℎ = 𝑟𝑜 − 𝑟𝑖  is 

very small (e.g. few micrometres in sealing gaps), the radius ratio is typically close to unity. 

 

 

Figure 1: Geometry of a concentric annular channel. 

 

A typical engineering problem with respect to annular channels is the calculation of the pressure loss Δ𝑝 for a 

given flow rate 𝑄 or area-averaged velocity �̅� = 𝑄/𝐴. For laminar steady flow (𝜕�̅�/𝜕𝑡 = 0), an analytical 
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expression for the pressure loss is known, see e.g. IDELCHIK [1]. For unsteady laminar flow with a given 

temporal distribution of the flow rate, a reasonable first guess would be to take the instantaneous value �̅�(𝑡) and 

calculate the unsteady pressure loss based on this value. This method is referred to as the quasi steady approach 

and is a common practice not only for annular channels but for pipe flows in general.  The quasi steady approach 

gives exact results for unsteady flows with relatively low frequencies. For highly dynamic flows like water 

hammer problems, the experiments conducted by HOLMBOE and ROULEAU [2] (performed with cylindrical 

pipes without an inner cylinder) could demonstrate that the quasi steady approach fails to predict the correct 

shape of the pressure transients, see Figure 2: 

  

 

Figure 2: Pressure transients for a typical water hammer experiment [3]. 

 

As can be seen in the diagram, the quasi-steady approach significantly underestimates the unsteady pressure loss 

(and hence amplitude damping) during a water hammer event. In such cases of highly dynamic flow, the effect 

of so-called frequency-dependent friction has to be taken into account. If frequency-dependent friction is used in 

the simulation, the correct shape of the pressure transients is matched very well. For laminar flows through 

circular pipes without an inner cylinder, a universal method for taking frequency-dependent friction into account 

has been published by ZIELKE [3]. The respective solution for annular channels is derived in the subsequent 

sections. 

2 Exact solution 

The pressure loss in any channel flow depends on the velocity distribution over the cross section of the 

respective channel. Hence, in order to calculate the pressure loss in annular channels, the velocity distribution 

has to be obtained. 

2.1 Radial velocity distribution 

Assuming nearly incompressible flow through annular channels of constant cross-section, the resulting velocity 

field is fully described by the radial distribution of the axial component 𝑢𝑧(𝑟, 𝑡) of the flow velocity. For 

simplicity, this quantity will hereafter be addressed as 𝑢(𝑟, 𝑡) since there is no other relevant velocity 

component. The theoretical derivation of the radial velocity distribution is based on solving the momentum 

equation (NAVIER-STOKES equation) in the direction of the pipe axis. Taking the aforementioned assumptions 

into account, the momentum equation reduces to the following differential equation: 
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𝜕𝑢

𝜕𝑡
+
1

𝜌

𝜕𝑝

𝜕𝑧
= 𝜈 (

𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
) 

(1) 

By performing a Laplace transform, the partial time derivative turns into an algebraic expression incorporating 

the Laplace variable 𝑠, which simplifies the equation further: 

𝑠𝑢∗ +
1

𝜌

𝜕𝑝∗

𝜕𝑧
− 𝜈 (

𝜕2𝑢∗

𝜕𝑟2
+
1

𝑟

𝜕𝑢∗

𝜕𝑟
) = 0 

(2) 

Taking into account that the pressure does not depend on the radial coordinate, the equation above represents an 

ordinary differential equation. By introducing the non-dimensional radial coordinate 𝑅 = 𝑟√𝑠/𝜈, this ODE can 

be transformed into a modified Bessel differential equation of zeroth order. The general solution reads: 

𝑢∗(𝑅) = 𝑐1𝐼0(𝑅) + 𝑐2𝐾0(𝑅) −
1

𝑠𝜌

𝜕𝑝∗

𝜕𝑧
 

(3) 

Here, 𝐼0 and 𝐾0 denote the modified Bessel functions of zeroth order. The constants 𝑐1 and 𝑐2 are chosen such 

that the no-slip condition is satisfied at the surfaces of the pipe and the cylinder: 

𝑢∗(𝑅𝑖) = 𝑢∗(𝑅𝑜) = 0 (4) 

Applying these boundary conditions, the solution reads: 

𝑢∗(𝑅) =
1

𝑠𝜌

𝜕𝑝∗

𝜕𝑧
{
𝐼0(𝑅)[𝐾0(𝑅𝑜) − 𝐾0(𝑅𝑖)] − 𝐾0(𝑅)[𝐼0(𝑅𝑜) − 𝐼0(𝑅𝑖)]

𝐼0(𝑅𝑖)𝐾0(𝑅𝑜) − 𝐼0(𝑅𝑜)𝐾0(𝑅𝑖)
− 1} 

(5) 

To simplify the representation of this expression in the subsequent sections, the following abbreviations are 

introduced: 

ℐ0 = 𝐼0(𝑅𝑜) − 𝐼0(𝑅𝑖) = 𝐼0(𝑅𝑜) − 𝐼0(𝜚𝑅𝑜) 

𝒦0 = 𝐾0(𝑅𝑜) − 𝐾0(𝑅𝑖) = 𝐾0(𝑅𝑜) − 𝐾0(𝜚𝑅𝑜) 

𝒩0 = 𝐼0(𝑅𝑖)𝐾0(𝑅𝑜) − 𝐼0(𝑅𝑜)𝐾0(𝑅𝑖) = 𝐼0(𝜚𝑅𝑜)𝐾0(𝑅𝑜) − 𝐼0(𝑅𝑜)𝐾0(𝜚𝑅𝑜) 

(6) 

Using these abbreviations, the velocity profile can be expressed as: 

𝑢∗(𝑅) =
1

𝑠𝜌

𝜕𝑝∗

𝜕𝑧
[
𝐼0(𝑅)𝒦0 − 𝐾0(𝑅)ℐ0

𝒩0
− 1] 

(7) 

2.1.1 Steady flow 

For the limit of steady flow (𝑠 → 0), the velocity profile approaches the following expression: 

lim
𝑠→0

𝑢∗(𝑅) = 𝑢(𝑟) =
𝑟𝑜
2

4𝜂

𝜕𝑝

𝜕𝑧
[(
𝑟

𝑟𝑜
)
2

+
ln (

𝑟
𝑟𝑜
) (1 − 𝜚2)

ln 𝜚
− 1] 

(8) 

To generalize the representation of the velocity profile, it is expressed using a non-dimensional radial coordinate 

𝑟′. This coordinate is defined in such a way that it assumes the values 𝑟′ = 0 at the cylinder’s outer surface and 

𝑟′ = 1 at the pipe wall: 

𝑟′ =
𝑟 − 𝑟𝑖
𝑟𝑜 − 𝑟𝑖

 
(9) 

For the graphical representation of the radial velocity distribution, the flow velocity 𝑢(𝑟) is normalized with its 

maximum value 𝑢𝑚𝑎𝑥: 
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𝑢′ =
𝑢(𝑟)

𝑢𝑚𝑎𝑥
 

(10) 

The velocity maximum 𝑢𝑚𝑎𝑥
′ = 1 is located at the coordinate 𝑟𝑚𝑎𝑥

′ : 

𝑟𝑚𝑎𝑥
′ =

√
𝜚2 − 1
2 ln 𝜚

− 𝜚

1 − 𝜚
 

(11) 

The normalized flow velocity 𝑢′ for different radius ratios 𝜚 is plotted against the non-dimensional radial 

coordinate 𝑟′ in Figure 3: 

 

 

Figure 3: Non-dimensional radial velocity profile for steady laminar flow through annular ducts. 

 

With vanishing gap height (ϱ→1), the velocity profile approaches a parabolic shape as it is known from the 

plane channel POISEUILLE flow between two parallel flat plates of infinite width. The velocity profiles for 

radius ratios 0.5 < 𝜚 < 1 are not plotted separately since they virtually coincide with the velocity distribution of 

the plane channel. Accordingly, the velocity maximum moves towards the gap centre for 𝜚 → 1: 

lim
𝜚→1

𝑟max
′ =

1

2
 

(12) 

2.1.2 Harmonically oscillating flow 

The volume flow 𝑄 and the area-averaged velocity  �̅�∗ are obtained by integrating the velocity profile over the 

flow area 𝐴 = 𝜋(𝑟𝑜
2 − 𝑟𝑖

2): 

�̅�∗ =
𝑄∗

𝐴
=
1

𝐴
∫ 𝑢∗

𝐴

d𝐴 =
2𝜋

𝜋𝑟𝑜
2(1 − 𝜚2)

∫ 𝑢∗𝑟
𝑟𝑜

𝑟𝑖

d𝑟 =
1

𝑠𝜌

𝜕𝑝∗

𝜕𝑧
[
2(ℐ1𝒦0 + ℐ0𝒦1)

(1 − 𝜚2)𝑅𝑜𝒩0

− 1] 
(13) 

Here, the following abbreviations were used: 

ℐ1 = 𝐼1(𝑅𝑜) − 𝜚𝐼1(𝜚𝑅𝑜) 

𝒦1 = 𝐾1(𝑅𝑜) − 𝜚𝐾1(𝜚𝑅𝑜) 

(14) 

Combining equations 7 and 13, one obtains the radial velocity distribution as a function of the mean flow rate: 
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𝑢∗(𝑅) = �̅�∗
𝐼0(𝑅)𝒦0 − 𝐾0(𝑅)ℐ0 −𝒩0
2(ℐ1𝒦0 + ℐ0𝒦1)
(1 − 𝜚2)𝑅𝑜

−𝒩0

 
(15) 

The velocity profile for unsteady flow depends on the Laplace variable 𝑠. For the analysis of harmonically 

oscillating flows, 𝑠 can be replaced by 𝑖𝜔. Instead of the angular frequency 𝜔, the non-dimensional gap 

WOMERSLEY number 𝑊𝑜ℎ is used. Unlike the usual definition of the WOMERSLEY number 𝑊𝑜, the gap 

WOMERSLEY number is calculated by replacing the diameter with the hydraulic diameter 𝑑ℎ of the annular 

channel (𝑑ℎ = 2ℎ): 

𝑊𝑜ℎ =
𝑑ℎ
2
√
𝜔

𝜈
= ℎ√

𝜔

𝜈
= (𝑟𝑜 − 𝑟𝑖)√

𝜔

𝜈
 

(16) 

The non-dimensional radial velocity profile 𝑢′ = 𝑢∗(𝑅)/𝑢max
∗  for harmonically oscillating annular channel flows 

is plotted for gap WOMERSLEY numbers 1 ≤ 𝑊𝑜ℎ ≤ 100 in Figure 4: 

 

 

Figure 4: Unsteady radial velocity profile for harmonically oscillating laminar flow through annular channels. 

 

As can be seen, the differences between the velocity distributions of the annular channel with a radius ratio of 

𝜚 = 0.1 and the plane channel (𝜚 → 1, dotted lines) are large for small gap WOMERSLEY numbers. Both 

velocity profiles practically coincide with their steady flow counterparts from Figure 3. With increasing 𝑊𝑜ℎ, 

the deviation between the velocity distributions becomes smaller. For large gap WOMERSLEY numbers 

𝑊𝑜ℎ = 100, the velocity profiles of the plane and annular channel (𝜚 = 0.1) are virtually indistinguishable. 

Hence, even channels with quite small radius ratios behave like a plane channel at sufficiently high frequencies. 

It should be noted that the velocity maxima move towards the walls with increasing gap WOMERSLEY number. 

This phenomenon is known as the RICHARDSON annular effect from pipes without an inner cylinder [4]. 

2.2 Pressure loss as a function of area-averaged velocity 

The pressure loss per unit length is the result of the shear stresses 𝜏𝑖
∗ and 𝜏𝑜

∗ acting at the cylinder and pipe walls: 

𝜋(𝑟𝑜
2 − 𝑟𝑖

2)
Δ𝑝∗

Δ𝑧
= 𝜋(𝑟𝑖𝜏𝑖

∗ + 𝑟𝑜𝜏𝑜
∗) 

(17) 

The shear stresses are proportional to the gradient of the velocity profile at the wall: 

𝜏𝑖
∗ = 𝜂

𝜕𝑢∗

𝜕𝑟
|
𝑟=𝑟𝑖

 
(18) 
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𝜏𝑜
∗ = −𝜂

𝜕𝑢∗

𝜕𝑟
|
𝑟=𝑟𝑜

 

Combining equations 13, 17 and 18, one obtains the following relation between the unsteady pressure loss per 

unit length and the area-averaged velocity: 

Δ𝑝∗

Δ𝑧
=
𝜂

𝑟𝑜
2

𝑅𝑜
2

(1 − 𝜚2)𝑅𝑜𝒩0
2(ℐ1𝒦0 + ℐ0𝒦1)

− 1
�̅�∗ =

𝜂

𝑟𝑜
2
𝐹∗�̅�∗ 

(19) 

Here, 𝐹∗(𝑠) denotes a non-dimensional function in which all frequency-dependent characteristics of the pressure 

loss are concentrated. 

2.2.1 Steady flow 

For the limit of steady flow, equation 19 converges towards the following expression: 

lim
𝑠→0

Δ𝑝∗

Δ𝑧
=
Δ𝑝

Δ𝑧
=
𝜂

𝑟𝑜
2

8

1 + 𝜚2 +
(1 − 𝜚2)
ln 𝜚

�̅� 
(20) 

For vanishing relative gap height (𝜚 → 1), the pressure loss law equals the one of a plane channel of the same 

gap height ℎ: 

lim
𝜚→1

Δ𝑝

Δ𝑧
=
𝜂

ℎ2
8(1 − 𝜚)2

1 + 𝜚2 +
(1 − 𝜚2)
ln 𝜚

�̅� =
12𝜂

ℎ2
�̅� 

(22) 

2.2.2 Harmonically oscillating flow 

If  �̅�(𝑡) is assumed to be harmonically oscillating (e.g. like the flow provided by a reciprocating pump), equation 

19 can be easily transformed into the time domain. Assuming a temporal variation of the mean flow velocity of 

the form �̅�(𝑡) = �̅�0 sin(𝜔𝑡), the pressure loss per unit length is given by the following equation: 

Δ𝑝(𝑡)

Δ𝑧
= 𝑉

Δ𝑝0
Δ𝑧

sin(𝜔𝑡 + 𝜑) = 𝑉
𝜂

𝑟𝑜
2

8

1 + 𝜚2 +
(1 − 𝜚2)
ln 𝜚

�̅�0 sin(𝜔𝑡 + 𝜑)  
(23) 

Here, Δ𝑝0/Δ𝑧 refers to the pressure loss per unit length calculated by inserting �̅�0 into equation 20 (quasi-steady 

approach). The magnification factor 𝑉 and the phase angle 𝜑 are plotted against the gap WOMERSLEY number 

𝑊𝑜ℎ in Figures 5 and 6:  

 

 

Figure 5: Magnification factor versus gap Womersley number for harmonically oscillating laminar flow. 
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Figure 6: Phase angle versus gap Womersley number for harmonically oscillating laminar flow. 

 

If the oscillation frequency 𝜔 is smaller than 𝜈/ℎ2 (i.e. 𝑊𝑜ℎ < 1), the magnification factor tends to unity and 

the phase angle vanishes. For this case, the quasi-steady approach provides exact results: 

Δ𝑝(𝑡)

Δ𝑧
=
Δ𝑝0
Δ𝑧

sin(𝜔𝑡) 
(24) 

For large frequencies 𝜔 → ∞, the phase angle approaches 𝜑 → 45°. The respective magnification factor grows 

monotonously to 𝑉 → ∞. Hence, the influence of frequency-dependent friction on highly dynamic flows cannot 

be neglected.  

2.3 Arbitrary unsteady flows 

For unsteady flows with a given velocity distribution  �̅�(𝑡) of arbitrary shape, derivation of the time domain 

formulation of equation 19 requires more effort. Since the pressure loss per unit length is given as a product of 

two functions in the Laplace domain, the respective time domain expression will feature a convolution integral 

of the following form: 

Δ𝑝

Δ𝑧
=
𝜂

𝑟𝑜
2
∫ �̅�(𝑡1)𝐹(𝑡 − 𝑡1)
𝑡

0

d𝑡1 
(25) 

To evaluate this integral, the inverse Laplace transform of 𝐹∗(𝑠) has to be derived. A necessity for the existence 

of the inverse of a Laplace transform is the convergence of the Laplace transform to zero for 𝑠 → ∞. 

Examination of 𝐹∗ reveals that this function does not converge to zero for 𝑠 → ∞. However, if the pressure loss 

is assumed to be a product of the time derivative 𝑠�̅�∗ of the averaged flow velocity and the function 𝐹∗/𝑠, an 

inverse Laplace transform exists. Hereafter, the quotient 𝐹∗/𝑠 will be abbreviated by 𝑊∗, which is given by: 

𝑊∗(𝑠) =
2𝑟𝑜

2/𝜈

𝑅𝑜(1 − 𝜚
2)[𝐼0(𝜚𝑅𝑜)𝐾0(𝑅𝑜) − 𝐼0(𝑅𝑜)𝐾0(𝜚𝑅0)]

[𝐼1(𝑅𝑜) − 𝜚𝐼1(𝜚𝑅𝑜)][𝐾0(𝑅𝑜) − 𝐾0(𝜚𝑅𝑜)] + [𝐾1(𝑅𝑜) − 𝜚𝐾1(𝜚𝑅𝑜)][𝐼0(𝑅𝑜) − 𝐼0(𝜚𝑅𝑜)]
− 2

 
(26) 

Since partial fraction decomposition is not possible due to the transcendental nature of the so-called weighting 

function 𝑊∗(𝑠), the general inversion formula (the BROMWICH integral) has to be employed in order to obtain 

the time domain representation 𝑊(𝑡): 

𝑊(𝑡) = ℒ−1{𝑊∗(𝑠)}(𝑡) =
1

2𝜋𝑖
∫ e𝑠𝑡𝑊∗(𝑠)
𝛾+𝑖∞

𝛾−𝑖∞

d𝑠 
(27) 
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This integral can be solved by using the residue theorem from complex analysis. The residue theorem states that 

the contour integral along a closed curve equals the sum of the residues of the integrand: 

1

2𝜋𝑖
∫ e𝑠𝑡𝑊∗(𝑠)
𝛾+𝑖∞

𝛾−𝑖∞

d𝑠 =∑Res{e𝑠𝑡𝑊∗(𝑠)}𝑠=𝑠𝑗

𝑛

𝑗=0

 
(28) 

If the integrand of the contour integral can be represented as a quotient of two functions 𝒳(𝑠) and 𝒴(𝑠), the 

residue at a simple pole 𝑠 = 𝑠𝑗  is given by: 

Res {
𝒳(𝑠)

𝒴(𝑠)
}
𝑠=𝑠𝑗

=
𝒳(𝑠𝑗)

𝜕𝒴
𝜕𝑠
|
𝑠=𝑠𝑗

 
(29) 

Hence, in order to evaluate the integral, the derivative of the denominator of 𝑊∗(𝑠) has to be evaluated at the 

poles 𝑠𝑗. Analysis of the weighting function shows that the first (and trivial) singularity is located at 𝑠0 = 0. All 

other poles are on the negative real axis. Since the weighting function is dependent on the ratio 𝜚, the positions 

of the poles vary with this parameter, too. It can be shown that for the technically important limit 𝜚 → 1 (sealing 

gaps), the position of the first nontrivial pole tends to 𝑠1 → −∞. This behaviour represents a serious hindrance 

for the numerical evaluation of the weighting function. Therefore, the exact solution for the annular channel is 

replaced by the plane channel approximation.  

3 Plane channel approximation 

The discussion of the steady flow velocity profile in section 2.1.1 revealed that the velocity profile of annular 

channel flows converges to a parabolic shape if the radius ratio 𝜚 approaches unity. For the limiting case 𝜚 → 1, 

the relation between pressure loss and area-averaged flow converges to the expression for plane channels as well. 

Hence, the annular channel with a radius ratio close to unity can be thought of as a perturbed variant of the plane 

channel. Based on this interpretation, the plane channel approximation is developed. 

3.1 Velocity profile 

Compared to the exact differential equation, the momentum equation of the plane channel approximation lacks a 

viscous term on the right hand side which represents the effects of the curvature of the velocity profile. Since a 

Cartesian coordinate system is used for the plane channel approximation, the radial coordinate 𝑟 is replaced with 

the vertical coordinate 𝑦: 

𝑠𝑢∗ +
1

𝜌

𝜕𝑝∗

𝜕𝑧
= 𝜈

𝜕2𝑢∗

𝜕𝑦2
 

(30) 

The general solution of this differential equation reads: 

𝑢∗(𝑌) = 𝑐1 sinh 𝑌 + 𝑐2 cosh 𝑌 −
1

𝑠𝜌

𝜕𝑝∗

𝜕𝑧
 

(31) 

In the general solution, the non-dimensional 𝑦-coordinate was used: 

𝑌 = 𝑦 √
𝑠

𝜈
 

(32) 

Application of the no-slip condition at 𝑦 = ℎ/2  and 𝑦 = −ℎ/2 leads to the velocity profile: 

𝑢∗(𝑌) =
1

𝑠𝜌

𝜕𝑝∗

𝜕𝑧
[sech (

𝐻

2
) cosh 𝑌 − 1]  

(33) 

Here, 𝐻 denotes the non-dimensional gap height 𝐻 = ℎ√𝑠/𝜈. For the limit of steady flow, the parabolic velocity 

profile is obtained as expected: 
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lim
𝑠→0

𝑢∗(𝑌) = 𝑢(𝑦) =
1

2𝜂

𝜕𝑝

𝜕𝑧
 (𝑦2 −

ℎ2

4
) 

(34) 

3.2 Pressure loss as a function of the area-averaged velocity 

Based on the velocity profile, the pressure loss can be given as a function of the area-averaged velocity  �̅�∗. The 

pressure loss for plane channels depends on the inner and outer shear stresses as follows: 

Δ𝑝∗

Δ𝑧
=
𝜏𝑖
∗ + 𝜏𝑜

∗

ℎ
 

(35) 

The shear stresses are given by: 

𝜏𝑖
∗ = 𝜂

𝜕𝑢∗

𝜕𝑦
|
𝑦=−

ℎ
2

 

𝜏𝑜
∗ = 𝜂

𝜕𝑢∗

𝜕𝑦
|
𝑦=

ℎ
2

 

(36) 

Inserting these definitions into equation 35, we obtain the following relation between pressure loss per unit 

length and the pressure gradient: 

Δ𝑝∗

Δ𝑧
= −

2

𝐻
tanh (

𝐻

2
)
𝜕𝑝∗

𝜕𝑧
 

(37) 

The area-averaged velocity is given by: 

�̅�∗ =
1

𝐴
∫ 𝑢∗

𝐴

d𝐴 =
1

ℎ
∫ 𝑢∗
ℎ
2

−
ℎ
2

d𝑦 =
1

𝑠𝜌

𝜕𝑝∗

𝜕𝑧
[
2

𝐻
tanh (

𝐻

2
) − 1] 

(38) 

Combining the two equations above gives the approximated relation between pressure loss and average velocity: 

Δ𝑝∗

Δ𝑧
=
𝜂

ℎ2

ℎ2
𝑠
𝜈

ℎ
2
√
𝑠
𝜈
coth (

ℎ
2
√
𝑠
𝜈
) − 1

�̅�∗ =
𝜂

ℎ2
𝑊∗𝑠�̅�∗ 

(39) 

3.2.1 Steady flow 

For the case of steady flow, the pressure loss is given by: 

lim
𝑠→0

Δ𝑝∗

Δ𝑧
=
Δ𝑝

Δ𝑧
=
12𝜂

ℎ2
�̅� 

(40) 

This result is consistent with equation 22 of the exact solution. 

3.2.2 Arbitrary unsteady flows 

For the plane channel approximation, a universal inverse Laplace transform of the weighting function can be 

provided. The approximated weighting function is given by: 

𝑊∗(𝑠) =
ℎ2/𝜈

ℎ
2
√
𝑠
𝜈
coth (

ℎ
2
√
𝑠
𝜈
) − 1

 
(41) 

Analysis of the approximated weighting function shows a trivial pole at 𝑠0 = 0; the first 20 non-trivial poles 𝑠𝑗 

are summarized in table 1: 
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Table 1: The first 20 non-trivial poles 𝑠𝑗 of the weighting function. 

𝑗 −
𝑠𝑗ℎ

2

𝜈
 𝑗 −

𝑠𝑗ℎ
2

𝜈
 𝑗 −

𝑠𝑗ℎ
2

𝜈
 𝑗 −

𝑠𝑗ℎ
2

𝜈
 

1 80.76293 6 1659.96027 11 5213.01906 16 10740.00596 

2 238.71764 7 2212.65811 12 6160.50114 17 12082.27450 

3 475.59933 8 2844.31396 13 7186.94136 18 13503.48582 

4 791.43137 9 3554.92598 14 8292.33702 19 15003.67761 

5 1186.21761 10 4344.49457 15 9476.68957 20 16582.79459 

 

The distance between the roots of the poles approaches √𝑠𝑗+1 − √𝑠𝑗 = 2𝜋𝑖 𝜈/ℎ
2. The poles are used to evaluate 

the residues. For the approximated weighting function, the residues are given by: 

Res

{
 
 

 
 

ℎ2/𝜈

ℎ
2
√
𝑠
𝜈
coth (

ℎ
2
√
𝑠
𝜈
)

e𝑠𝑡

}
 
 

 
 

𝑠=𝑠𝑗

=
8

2
ℎ√

𝜈
𝑠𝑗
coth (

ℎ
2
√
𝑠𝑗
𝜈
) − csch2 (

ℎ
2
√
𝑠𝑗
𝜈
)

e𝑠𝑗𝑡 

(42) 

For the trivial pole 𝑠0 = 0, the residue is given by: 

Res{e𝑠𝑡𝑊∗(𝑠)}𝑠=0 = 12 (43) 

For all other poles 𝑠𝑗, the residue equals: 

Res{e𝑠𝑡𝑊∗(𝑠)}𝑠=𝑠𝑗 = 8𝑒𝑠𝑗𝑡 (44) 

Hence, the approximated weighting function in the time domain is given by: 

𝑊(𝑡) = 12 + 8∑e𝑠𝑗𝑡
∞

𝑗=1

 
(45) 

Clearly, the weighting function can be decomposed into a constant part (quasi-steady approach) and a time-

dependent part (frequency-dependent friction). The dynamic weighting function 𝑊𝑑(𝑡) is obtained if the 

constant part is subtracted from the weighting function: 

𝑊𝑑(𝑡) = 𝑊(𝑡) − 12 (46) 

Analysis of equation 45 shows that the sum of residues converges very slowly for small times. The behaviour for 

small times 𝑡 → 0 in the time domain corresponds to the behaviour for large values of the Laplace variable 

𝑠 → ∞ in the Laplace domain. Hence, the dynamic weighting function is developed into a power series at 𝑠 → ∞ 

in order to obtain a more suitable time domain expression for small times. For large arguments 𝑠, the hyperbolic 

cotangent tends faster towards unity than 𝑠 tends towards infinity. Using this fact, the power series reads: 

lim
𝑠→∞

𝑊∗(𝑠) =
ℎ2/𝜈

ℎ
2
√
𝑠
𝜈
− 1

≈ 2ℎ√
1

𝑠𝜈
+
4

𝑠
+
8

ℎ
√
𝜈

𝑠3
+
16

ℎ2
𝜈

𝑠2
+
32

ℎ3
√
𝜈3

𝑠5
+
64

ℎ4
𝜈2

𝑠3
+
128

ℎ5
√
𝜈5

𝑠7
+⋯ 

(47) 

The inverse Laplace transform of the dynamic weighting function is then given by: 

𝑊𝑑(𝑡𝑛) =
2

√𝜋𝑡𝑛
− 8 +

16

√𝜋
√𝑡𝑛 + 16𝑡𝑛 +

128

3√𝜋
√𝑡𝑛

3
+ 32𝑡𝑛

2 +
1024

15√𝜋
√𝑡𝑛

5
+⋯ 

(48) 
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Here, 𝑡𝑛 refers to the normalised time 𝑡𝑛 = 𝑡𝜈/ℎ2. For normalised times 𝑡𝑛 < 0.0023, the above equation should 

be used instead of equation 45. The dynamic weighting function is plotted against the normalised time in 

Figure 7: 

 

 

Figure 7: Dynamic weighting function versus normalised time. 

 

Now that the dynamic weighting function is known, the overall pressure loss can be expressed as follows: 

Δ𝑝(𝑡)

Δ𝑧
=
12𝜂

ℎ2
�̅�(𝑡) +

𝜂

ℎ2
∫
𝜕�̅�

𝜕𝑡
(𝑡1)𝑊𝑑(𝑡 − 𝑡1)

𝑡

0

d𝑡1 
(47) 

With this equation, all required information to calculate the pressure loss for a given temporal distribution 

of  �̅�(𝑡) is provided. For practical calculations using a computer, the efficient approaches presented by TRIKHA 

[5] or SCHOHL [6] should be used. 

3.3 Error Analysis 

Due to the approximation by plane channel model, an error is introduced into the pressure loss calculation.  

 

 

Figure 8: Relative error of the plane channel approximation versus gap Womersley number. 
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Since the pressure loss depends on the radius ratio 𝜚, the relative error 𝜀 between the exact solution and the plane 

approximation will depend on this quantity as well. Since no time-domain expression for the exact relation 

between pressure loss and area-averaged velocity was derived, the comparison has to be carried out in the 

frequency domain. The relative error between the exact solution and the plane channel approximation is plotted 

against the gap WOMERSLEY number in Figure 8. 

As can be seen, the maximum error occurs at low frequencies 𝑊𝑜ℎ < 1 and becomes smaller with increasing 

frequency. Hence, for analysing the maximum error as a function of the radius ratio, it is sufficient to limit the 

considerations to the error for the steady flow case. The maximum error is plotted against the radius ratio in 

Figure 9: 

 

 

Figure 9: Relative error of the plane channel approximation versus radius ratio. 

 

As can be seen in the diagram, the plane channel approximation introduces errors 𝜀 < 1 % if the radius ratio is 

above 𝜚 = 0.45. This error can be decreased further if the quasi-steady part of the pressure loss is replaced by 

the exact expression (equation 20). 

4 Summary and Conclusion 

The findings of the paper can be summarized as follows: 

 The pressure loss per unit length Δ𝑝/Δ𝑧 for steady laminar flow through an annular channel is given by: 

Δ𝑝

Δ𝑧
=
𝜂

𝑟𝑜
2

8

1 + 𝜚2 +
(1 − 𝜚2)
ln 𝜚

�̅�  

 The area-averaged flow velocity  �̅� is given by: 

�̅� =
𝑄

𝐴
=

𝑄

𝜋𝑟𝑜
2(1 − 𝜚2)

 

 The pressure loss for steady flow through annular channels of vanishing gap height ℎ → 0 (𝜚 → 1) 

equals the pressure loss of a plane channel with the same gap height: 

Δ𝑝

Δz
=
12𝜂

ℎ2
�̅� 

 For oscillating pipe flow with �̅�(𝑡) = �̅�0 sin(𝜔𝑡), the pressure loss is given by: 
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Δ𝑝(𝑡)

Δ𝑧
= 𝑉

𝜂

𝑟𝑜
2

8

1 + 𝜚2 +
(1 − 𝜚2)
ln 𝜚

�̅�0 sin(𝜔𝑡 + 𝜑) 

 The magnification factor 𝑉 and the phase angle 𝜑 are plotted as functions of the gap WOMERSLEY 

number in figures 5 and 6. The gap WOMERSLEY number is given by: 

𝑊𝑜ℎ = ℎ√
𝜔

𝜈
= (𝑟𝑜 − 𝑟𝑖)√

𝜔

𝜈
 

 For small angular frequencies 𝜔 < ℎ2/𝜈, the magnification factor 𝑉 approaches unity and the phase 

angle 𝜑 tends to zero (quasi-steady limit). 

 For arbitrary temporal distributions of the flow velocity, the pressure loss is given by a convolution 

integral. The convolution integral features a weighting function that depends on the radius ratio. Hence, 

a different inverse Laplace transform would have to be derived for each radius ratio. Instead, the 

annular channel flow is approximated by a plane channel model. 

 The approximated pressure loss for arbitrary temporal distributions is given by: 

Δ𝑝(𝑡)

Δ𝑧
=
12𝜂

ℎ2
�̅�(𝑡) +

𝜂

ℎ2
∫
𝜕�̅�

𝜕𝑡
(𝑡1)𝑊𝑑(𝑡 − 𝑡1)

𝑡

0

d𝑡1 

 The error due to plane channel approximation is largest for steady flow. For radius ratios 𝜚 > 0.45, the 

error is less than 1 %. 

 For an efficient evaluation of the convolution integral, the methods presented by TRIKHA or SCHOHL 

should be used [5] [6]. 

 

Nomenclature 

Variable Description Unit 

𝐴 Flow area m² 

coth(𝑥) Hyperbolic cotangent of 𝑥 - 

𝑑ℎ Hydraulic diameter, 𝑑ℎ = 2ℎ m 

𝐹 Function used in the determination of unsteady pressure loss - 

ℎ Gap height, ℎ = 𝑟𝑜 − 𝑟𝑖  m 

𝐻 Non-dimensional gap height, 𝐻 = ℎ√𝑠/𝜈  - 

𝑖 √−1 - 

𝐼𝑛(𝑥) Modified Bessel function of the first kind and 𝑛th order with the argument 𝑥 - 

𝐾𝑛(𝑥) Modified Bessel function of the second kind and 𝑛th order with the argument 𝑥 - 

𝐿 Length of the annular channel m 

𝑝 Pressure kg∙m
-1

∙s
-2

 

𝑟 Radial coordinate m 

𝑟′ Non-dimensional radial coordinate - 

𝑠 Laplace variable s
-1
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sech(𝑥) Hyperbolic secant of 𝑥 - 

𝑡 Time coordinate s 

𝑡𝑛 Normalised time - 

𝑢 Axial component of the flow velocity m∙s
-1

 

�̅� Area-averaged flow velocity m∙s
-1

 

𝑢′ Non-dimensional oscillating velocity profile - 

𝑊 Weighting function - 

𝑊𝑑  Dynamic weighting function - 

𝑊𝑜ℎ  Gap WOMERSLEY number - 

𝑦 Cartesian coordinate for the plane channel model m 

𝑌 Non-dimensional 𝑦-coordinate, 𝑌 = 𝑦√𝑠/𝜈 - 

𝑧 Axial coordinate m 

𝜀 Error % 

𝜂 Dynamic viscosity of the fluid kg∙m
-1

∙s
-1

 

𝜈 Kinematic viscosity of the fluid m²∙s
-1

 

𝜚 Ratio of outer cylinder radius 𝑟𝑖 and inner pipe radius 𝑟𝑜 - 

𝜌 Fluid density kg∙m
-3

 

𝜏 Shear stress kg∙m
-1

∙s
-2

 

𝜔 Angular frequency s
-1

 

𝑥∗ Laplace-transform of the quantity 𝑥, 𝑥∗ = ℒ{𝑥}(𝑠) [𝑥] 
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